
Programming
Syntax and Style

David Greenstein

Monta Vista High School

Programming Language Syntax
All have:

• Comments

• Programmer-defined  
Names

• Reserved Words

• Structure

Assembly Code (Amiga 68K)

1950 1960 1970 1980 1990 2000 2010 2020

FORTRAN (FORmula TRANslation)

COBOL

1950 1960 1970 1980 1990 2000 2010 2020

LISP (LISt Processing)

1950 1960 1970 1980 1990 2000 2010 2020

APL (A Programming Language)

1950 1960 1970 1980 1990 2000 2010 2020

C Language

1950 1960 1970 1980 1990 2000 2010 2020

Pascal ADA

1950 1960 1970 1980 1990 2000 2010 2020

C++ Python

1950 1960 1970 1980 1990 2000 2010 2020

Javascript

1950 1960 1970 1980 1990 2000 2010 2020

Java
Syntax and Style

Syntax and Style on the Web

Brace “{ }” Structure
for (int a = 1; a < 5)

if (count > 0)
count-- ;

else {
reset = true;
count = 100;

}
{

even += odd;
two = ! two;

}

• A pair of braces denote one “compound statement”  
(even if the braces contain a single statement).

• Statements inside braces are indented.

• Java braces are an example of “block structured” languages

Single

statements

Each

are one

compound

statement

(braces)

• In Java, a number of words are reserved for a special
purpose.

• Reserved words use only lowercase letters.

• Reserved words include:

primitive data types: int, double, char, boolean, etc.

storage modifiers: public, private, static, final, etc.

control statements: if, else, switch, while, for, etc.

built-in constants: true, false, null

• There are about 50 reserved words total.

Reserved Words

• The programmer gives names to his or her classes,
methods, fields, and variables.

• In addition to reserved words, Java uses standard
names for library packages and classes (APIs):

java.lang.String
java.io.File
java.awt.Graphics
java.util.Scanner
javax.swing.JFrame

• Careful! Check to be sure your class names do not
conflict with Java’s API class names.

Programmer-Defined Names

• Syntax: A name can include:

upper- and lowercase letters (e.g. camelCase)

digits (e.g. july4th)

underscore characters (e.g. CARD_CNT)

• Syntax: A name cannot begin with a digit. 
4score, 365days

• Style: Names should be descriptive to improve
readability.

YES: dealtCards; NO: dc

Exception: names with limited roles, like names used in loops. 
for (int a = 1; a < 5; a++)

Programmer-Defined Names (cont.)

• Class names
The first letter is always uppercase.

The name should use camel-case.

The name describes the class and are “noun-like”.

• Method names
The first letter is always lowercase.

The name should use camel-case.

The name should be “verb-like” describing the action.

Programmer-Defined Names (cont.)

e.g. MyClass, CardDeck, Yahtzee

e.g. setBackground, getText, moveForward

• Field names
The first letter is always lowercase.

The name should use camel-case.

The name should be “noun-like” describing the object.

• Constant names
Use ALL_UPPER_CASE for constants separating words with
underline characters.

Java constant fields are declared private final.

Make constants out of “magic” numbers. These are numbers that
have a significant meaning in your code. For example, the number
of cards in a hand.

Programmer-Defined Names (cont.)

e.g. TAX_RATE, CARD_HAND

e.g. count, windowWidth, htmlCanvas

• In-line comment “//“
The Java compiler ignores anything on a line to the right of a
double-slash “//“.

• Multiple-line comment delimiters “/*” and “*/“
The Java compiler ignores anything starting with “/*” and ending
with “*/”.

Comments

/*
 This comment can
 last several lines.
*/

c += d; // comment is end of line
// comment is the whole line

Great for commenting out large 
segments of code for debugging!!!

• JavaDoc comments for documenting surrounded by 
“/**“ and “*/“

The javadoc program automatically reads the comments from
your source code and generates API-style HTML.

javadoc annotations, denoted by a “@“, provide key information.

Comments (cont.)

/** This method calculates the determinant
 of a matrix.
 Precondition: matrix A must be square
 @param A matrix A
 @return the determinant of A
 */
public int determinant(Matrix A) { …

• Always provide generous amounts of comments

Comments (cont.)

• Always provide generous amounts of comments
Comment important fields and local variables

Comments (cont.)

JPanel first; // First panel shown in the game
int count; // Number of cards remaining

double a, b, c;

Important fields in

design need

comments

Helper variables

do not need

comments

• Always provide generous amounts of comments
Comment important fields and local variables

Comment each method

Comments (cont.)

/** Determines number of zombies near robot
 Precondition: robot is on field
 @param bot the robot
 @param loc robot’s current location
 @return number of nearby zombies
 */
public int zombieCounter(Robot bot, Location loc) {

Describe what is

returned

A concise

description

List all of the

input parametersList preconditions

and postconditions

• Always provide generous amounts of comments
Comment important fields and local variables

Comment each method

Put a header on each class

Comments (cont.)

/** Robot class
 * A friendly robot that walks around a Field
 * fighting zombies in its path.
 * @author Mr Greenstein
 * @since September 29, 2017
 */
public class Robot implements Comparable { …

A concise

description

Author (you)

and date created

• Always provide generous amounts of comments
Comment important fields and local variables

Comment each method

Put a header on each class

• Missing comments? Serious consequences!

Comments (cont.)

LOSE 10% OF
YOUR PROJECT GRADE

• Keep your coding under 80 characters per line.

Other Style Issues

if (item.getItemCost() > money) {
 System.out.printf("\nNO SALE: Not enough money to buy the " +
 “item\tChange: $%6.2f\n\n", money);
 return -1;
}

if (item.getItemCost() > money) {
 System.out.printf("\nNO SALE: Not enough money to buy the item\tChange: $%6.2f\n\n", money);
 return -1;
}

YES

NO

• Keep your coding to < 80 characters per line.

• Names are descriptive, but short (< 15 chars).

Other Style Issues

int theLengthOfTheField;NO

YES int fieldLength;

• Keep your coding to < 80 characters per line.

• Names are descriptive, but short (< 15 chars).

• Names of methods that return a boolean value 
start with “is” or “has”. For example:

Other Style Issues

public boolean isOverdrawn()
public boolean hasCreditLeft()

• The compiler catches syntax errors and generates error
messages.

• Text in comments and literal strings within double
quotes are excluded from syntax checking.

• Braces, brackets, and parentheses ({}, [], ()) can be on
different lines

• Double quotes (“”) must be on the same line

Syntax Errors

 publc static int abs (int x)
 {
 fi (x < 0);
 {
 x = -x
 }
 return x;

 public static int sqrt (int x)
 ...

Common Syntax Errors

Spelling

Extraneous

semicolon

Missing

semicolon

Missing

closing

brace

• Pay attention to and check for:

Matching braces { }, parentheses (), and brackets [].

Missing or extraneous semicolons.

Symbols used correctly for operators +, -, =, <, <=, ==, ++, &&, etc.

Spelling is correct for reserved words, library names and
programmer-defined names, with special attention to upper/lower
case.

Syntax Errors (cont.)

Which is a better style?
public void act()
{if(steps< sideLength&&
canMove()){move();
steps++;}else{
turn();turn(); steps=0;}}

 public void act() {
 if (steps < sideLength &&
 canMove()) {
 move();
 steps++;
 }
 else {
 turn();
 turn();
 steps = 0;
 }
 }

• Put spaces between lines.

• Put spaces between words and operators.

• Indent nested code.

Both compile

Questions?

